Kumdan silikona: Bir işlemcinin üretim hikayesi

İsimli konu WH 'İşlemciler' kategorisinde, Nacizane.. üyesi tarafından 12 Haziran 2010 tarihinde yazılmıştır. Kumdan silikona: Bir işlemcinin üretim hikayesi hakkında bilgi ve tartışmalar.

  1. Kumdan Silikona: Bir İşlemcinin Üretim Hikayesi​


    Kum
    Silikon, yer kabuğundaki ikinci (%25) en yaygın kimyasal elementtir. Kum özellikle de kuvars yüksek miktarda silikon (silikondioksit-SiO2 ) içerdiği ve silikon'da yarıiletken üretiminde ana bileşen olduğu için çip üreticilerinin temel maddesidir.​
    [​IMG]

    Eritilmiş Silikon
    Silikon, farklı aşamalardan geçerek arındırılır ve sonunda yarıiletken üretiminde kullanılacak kalite seviyesine ulaşır ki buna Elektronik Grad Silikon adı verilir. Elektronik Grad Silikon, milyarlarca silikon ve alyan atomu içerir. Yukarıdaki resimde arındırılmış silikon eriyiğinden elde edilen külçeyi (mono kristal) görebilirsiniz.​

    Mono Kristal Silikon Külçe
    Külçe, Elektronik Grad Silikondan üretilir. Bir Külçe 100 kilogram ağırlığında olup, %99.9999999 silikon saflığına sahiptir. Külçeler, Wafer olarak adlandırılan ayrı disklere kesilirler. Her bir Wafer'ın kalınlığı 1mm'dir. Waferlar, ayna parlaklığında, kusursuz bir yüzeye sahip olana kadar parlatılırlar. Intel, tüm bu süreçlerden geçmiş üretime hazır waferları üçüncü parti firmalardan temin eder. Intel, ileri teknoloji ürünü gelişmiş 32nm High K / Metal Kapı sürecini, yaklaşık 12-inç büyüklüğündeki 300mm waferlarda kullanır ki firmanın ilk defa çip üretmeye başladığında baskılı devreler için 2-inç büyüklüğündeki 50mm waferlar kullandığı dikkate teknolojideki gelişim daha net gözlenebilir zira firma yaptığı yatırımların bir sonucu olarak bugün üretimde 300mm waferlar kullanıyor ve bu gelişme çip başına maliyetlerin düşürülmesini sağlıyor.​
    [​IMG]

    Fotorezist Uygulaması
    Wafer üzerinden çip elde etme işlemi, yüksek hassasiyet seviyesiyle kontrol edilen yüzlerce adımı içermektedir. İşte bu sürecn en önemli aşamalarından biri de farklı materyaller içeren kalıpların birbiri ardına dizilmesidir. İşlemci üretimindeki uzun ve karmaşık süreçte en önemli aşamalardan biri de fotorezist uygulamasıdır. Yukarıdaki resimde Mavi renkle görülen fotorezist, ortaya çıktıktan sonra bir sonraki aşama için temizlenir. Kalan fotorezist (resimdeki Mavi parlaklık), materyalleri iyon implantasyonuna maruz kalmamaları için korur.
    İyon İmplantasyonu
    [​IMG] İşlemci zarı elde edilecek wafer, fotolitografi kullanılarak kalıplara ayrılır. Wafer, artı veya eksi yüklü iyonlar içeren ışın bombardımana tutulur. İyonlar, kendilerini wafer yüzeyinin altına, seçili lokasyonlardaki silikonun iletken özelliklerinde değişiklik yapmak üzere gömerler. Resimde görülen yeşil bölgeler, doğru şekilde uygulanmış aylan atomlarını göstermekte.

    High-K Dielektrik Birikimi
    [​IMG]
    Intel, wafer yüzeyinde, transistör kapısı ve onun kanalı arasındaki geleneksel yalıtkanlar yerine çok katmanlı dielektrik materyal kullanıyor. Bu materyal, bir seferde bir atomik katman uyguluyor. Bu uygulama, elektrik sızıntılarını azalttığı gibi enerji verimli işlemci üretimini de mümkün kılıyor.
    Wafer yüzeyine uygulanan ayrı molekül katmanlarının her biri, çoklu katman içerir. Orta resimdeki sarı iki katman, işte bu katmanları temsil ediyor. Üçüncü resim ise High-K yalıtkan materyalin tüm wafer yüzeyine uygulanışını gösteriyor. High-K yalıtkan materyal, geleneksel silikondioksit katmana göre daha kalın olmakla birlikte, performansı maksimize edecek aynı sığal özelliklere sahiptir. Uygulanan yenilikçi yalıtkan sayesinde, yapısal değişikliklere rağmen, akım kaçağı azaltılabilimiştir.​

    Foto Litografi
    [​IMG]
    Wafer üzerine dökülen siyah sıvı ile birlikte döndürülür, bu adım , ince fotorezist katmanının uygulanmasına olanak tanır. Fotorezist, ultra viole ışığa çıkartılır. Bu aşamada meydana gelen kimyasal reaksiyon, obtüratör butonuna basıldığı anca film kamerasında meydana gelen ile oldukça benzerdir. Ultra Viole ışığa çıkartılan fotorezist arından çözülebilir olacaktır. Stensil benzeri maskeler kullanılarak tamamlanan açığa çıkartma işleminde, UV ışık kullanılmaktadır çünkü bu sayede maskeler, işlemcinmin her katmanında yer alan çeşitli baskılı devrelerini yaratır. Orta resimde görülen lens, maskenin imajını azaltır ve sonuç olarak wafer üzerinde oluşan baskı tipik olarak maskenin kendi kalıbından dört kat daha küçük olur. Intel araştırmaları geliştirdikleri çok daha küçük transistörler sayesinde tek bir pinin başına 30 milyon transistor yerleştirebiliyorlar.​

    Etching - Aşındırma
    [​IMG]
    Yapışkan fotorezist, kullanılan çözücü ile yok edilir. Bu adımla birlikte maske tarafından yapılan fotorezist kalıbı (siyah kısım) ortaya çıkar. Fotorezist, kimyasallara aşınmaması adına High-K dielektriği koruma görevini üstlenir. Aşındırılmış fotorezistin kaldırılmasından sonra istenen şekil görünür olur.
    Metal Dökme
    [​IMG]
    Hazır transistörler artık finişe yakındır. Üç delik Kırmızı renkle görülen yalıtkan katman ile yakılır. Bu üç delik, bakır veya diğer transitörlerle iletişimi sağlayacak metaller ile doldurulur. Elektro-Kaplama aşamasında waferlar, bakır sülfta solüsyon içerisine sokulurlar. Bakır iyonları, elektro-kaplama adı verilen işlem ile transistörlere dökülürler. Bakır iyonları, pozitif terminalden (anot) negatif terminale (katot) doğru seyahat ederler. Elektro-Kaplama aşamasında sonra Bakır iyonları aynı ince bir Bakır katmanı gibi yerleşirler wafer üzerine. ​

    Metal Katmanlar
    [​IMG]

    Bu aşamada önce artan materyal silinir. Çoklu metal katmanlar, farklı transistörler arasında bağlantı (kablolar gibi) yaratırlar. Bağlantıların nasıl gerçekleşeceği ise mimari ve tasarım ekipleri tarafından tanımlanır. Bilgisayar çipleri aşırı düz görünürler, aslında 30'dan fazla katmana sahip olan işlemcilerin büyütülmüş görüntülerine bakılırsa, devre hatları arasındaki karışık ağ yapısı ve transistörler, futuristik bir çok katmanlı otoban sistemi görüntülenebilir. Wafer süreci tamamlandıktan sonra waferlar, tümleşke ve test tesislerine transfer edilirler. ​

    Wafer Sınıflandırma Testi ve Dilimleme
    [​IMG]
    Hazır waferlar ilk olarak fonksiyonalite testine tabi tutulurlar. Bu aşamada, test kalıbı her tek çip için tekrarlanır ve çipin tepki süresi takip edilerek "doğru cevap" ile karşılaştırılır. Wafer dilimleme aşamasında, wafer "zar" olarak tanımlanan parçalara ayrılır. Intel'in 32nm Core i3 ve Core i5 işlemcilerinde, biri CPU diğeri de grafik için olmak üzere iki zar hazırlanıyor ve aynı pakette bir araya getirilirler. Az önce detaylandırdığımız üzere test aşamasında doğru cevabı veren zarlar bir sonraki aşamaya geçer, hatalı zarlar ise ayıklanır. Wafer dilimleme aşamasından sonra işlemcilerde kullanılacak zarlar ortaya çıkar. ​
    Paketleme
    [​IMG]
    Wafer dilimlemesinin ardından paketlemeye geçililir ve zar ya da zarlar (Core i3 ve Core i5 için) ısı dağıtıcı ile birlikte tamamlanmış işlemci formunu oluşturmak için bir araya getirilir. Resimde görülen yeşil alt tabaka, PC sisteminin kalınıyla kurulacak iletişim için gerekli olan elektriksel ve mekanik arabirimi kurar. Resimde görülen gümüş ısı dağıtıcı ise kullanılacak işlemci soğutucusu ile teması sağlar ve çalışma esnasında işlemciyi serin tutar. Son resimde ise tamamlanmış bir işlemci görülmektedir. Mikroişlemciler, dünya üzerinde üretim süreci en karmaşık ürünlerdir ve yüzlerce süreçten geçerler. Tabi tüm bunlardan bahsederken, işlemcilerin, dünyanın en temiz ortamında yani mikroişlemci tesislerinde üretildiğini de belirtelim.​

    Sınıf Testi, Tamamlanmış İşlemci
    [​IMG]
    Bu son test aşamasında, hazırlanan işlemciler, anahtar karakterlerini ortaya çıkartacak (ısıl güç tasarımı ve en yüksek frekans değerleri) teste alınırlar ve elde edilen test sonuçlarına göre modellendirme yapılarak aynı kapasitedeki işlemciler aynı taşıma rafına dizilirler. Üretimi bitmiş ve test süreci tamamlanmış işlemciler, sistem üreticilerine raflar içerisinde, teknolohji mağazalarına ise orijinal kutuları içerisinde gönderilir ve tüketicilerle ilk buluşma gerçekleşmiş olur. ​
    12 Haziran 2010
    #1
  2. Kumdan silikona: Bir işlemcinin üretim hikayesi Cevapları

  3. Konuyla mesleki olarak uzak ,yakın en ufak bir ilgim yok.Bu sayfaya nereden girdim ,bunu bile hatırlamıyorum ancak bu da neymiş böyle derken okudum ,okudum ,okudum ,bir baktım sayfa sonunda gelmişim.Hayatımda duymadığım ,bilgi sahibi olmadığım bir alanda böylesine anlaşılır bir dil kullanılmasını gerçekten de büyük başarı olarak görüyorum.Kısacası bu yazıyı okuyup anlamak için bilgisayar teknolojisini bilmek ya da bilgisayar mühendisi olmak gerekmiyormuş demek...Yazı kime aitse ve burada her kim paylaştıysa hepsine teşekkür ediyorum...:bravo::bravo::bravo::bravo::bravo::bravo::bravo::yuppi::yuppi::yuppi::yuppi::yuppi:

    Not: Bu yazıyı okuduktan sonra sitenize üye olma kararı aldım ve anında üye oldum.Yukarıdaki ilk mesajımdır ...Ve ben 50 yaşında bir teyzeyim:))) :yuppi:
    24 Ekim 2010
    #2
  4. Vay be çok güzel anlatılmış gerçekten. Teşekkür ederim...
    24 Ekim 2010
    #3
  5. sanırım shiftdelete'ten alıntı kaynak belirtirlse daha iyi olurdur. iyi bir çalışma
    6 Kasım 2010
    #4
  6. Vay be! bunu daha önce hiç duymamıştım pylaşım için saol :bravo:
    9 Kasım 2010
    #5
  7. hımmm bilgasyara meraklıyım çuok ilginç
    29 Haziran 2012
    #6
soru sor

Kumdan silikona: Bir işlemcinin üretim hikayesi

Alakalı Aramalar:

  1. silikon ana bilesenleri